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VELOCITY AND TEMPERATURE FLUCTUATIONS IN A TURBULENT SUSPENSION 

I. V. Derevich UDC 532.529:532.517.4 

The effect of the particles of a suspension on the spectrum of velocity and 
temperature fluctuations is studied on the basis of the equations for the 
second two-point moments. 

The effect of the particles on the spectrum of velocity and temperature fluctuations 
of a gas with particles arises in connection with the propagation of acoustic, optical, 
and radio waves in a dusty medium. The distortion of the spectrum of fluctuations of the 
gas component due to the particles has not been studied sufficiently either theoretically 
or experimentally. There is no data in the literature on the spectrum of temperature 
fluctuations of a gas with particles and there is no common view on the nature and degree 
of the distortion of the distribution of fluctuation energy of the gas among vortices of 
different sizes in a suspension. For example, it is assumed in [I] that the addition of 
particles into a turbulent fluid does not change theintensity of velocity fluctuations of 
power-consuming vortices but leads to a suppression of small-scale vortices whose charac- 
teristic sizes are smaller than the diameter of the particles suspended in the fluid. The 
model of [i] was applied in [2, 3] to the hydrodynamics and heat transfer of the flow of a 
suspension in a pipe. In [4] the spectrum of velocity fluctuations of the gas component 
of a suspension was studied theoretically and it was found that the intensity of turbulent 
velocity fluctuations increases in the inertial part of the spectrum and decreases in the 
region of viscous dissipation. But the theoretical picture of the distortion of the spec- 
trum of velocity fluctuations of the gas in the presence of particles does not agree with 
the experimental data of [5, 6]. In these papers it was established that small particles 
lead to a significant decrease in the intensity of turbulent velocity fluctuations of the 
gas in energy-containing vortices and in the inertial region of the spectrum, while in the 
viscous dissipation region fluctuations increase. 

In the present paper we consider a fluid with a small volume concentration of impurity 
particles. On the basis of the equations for the second two-point correlations of the veloc- 
ity and temperature fluctuations in the discrete and fluid phases we obtain expressions for 
the spectral functions describing the intensity distribution of velocity and temperature 
fluctuations of the gas phase as functions of the wave number in the inertial and convective 
regions of the spectrum. We study the effect of the ratio of the heat capacities of the 
particles and the gas and also the molecular Prandtl number of the gas on the spectrum of 
temperature fluctuations of a gas with particles. 

The system of equations for the second two-point correlations of the velocity fluctua- 
tions for the fluid and discrete phases has the following form, assuming homogeneous isotro- 
pic turbulence [4] 

aE. (k,t) --F~,(k, t)=--2,~k2E.(k, t) - - 2 -  ~ [E.(k, t ) 'E, ,v(k ,  01, 
at xu 

( l )  
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OE~ (k, t) F,  (k, l) = 2 _ [E=~ (k, t) - -  E~ (k, t)l, 
at ~, ( 2 ) 
OE~,v (k, t) Fu~ (k, t) = - -  vkZEuo (k, t) 

Ot 

- -  ~--~---[E~,v(k, t ) - - E v ( k ,  t ) l +  l---[E,,(k, t ) - -E , ,u (k ,  t)l. ( 3 )  
~u "Tu 

The s y s t e m  o f  e q u a t i o n s  f o r  t h e  s e c o n d  t w o - p o i n t  c o r r e l a t i o n s  o f  t e m p e r a t u r e  f l u c t u a -  
t i o n s  o f  t h e  f l u i d  and d i s c r e t e  p h a s e s ,  i n  t h e  c a s e  o f  homogeneous  i s o t r o p i c  t u r b u l e n c e ,  
can be written in the form: 

OEox(k, t) Fo~(k, t) = - -  fxk~Eo, (k, 0 - - 2  c~ q) [Eo~(k ' t ) _ E o , ~ ( k ,  t)l, ( 4 )  
Ot c~ % 

OEo~ (k, t) Fo, (k, t) = ~ [Eor~ (k, t) - -  Eo~ (k, t)], (.5) 
at ~o 

aEo~2 (k ,  t) c~ � 9 1 6 2  ( 6 )  Fo~2 (k, t) = - -  zk fEo~  (k, t) [Eo~, (k, t) --Eo~ (k, t)]+ I__ [Eo~ (k, t) - -  Eo~ (k, t)l. 
Ot c~ To "% 

We consider the universal equilibrium region in wave number space (k >> ke, where k e 
is the wave number corresponding to energy-containing vortices). The nature of the turbu- 
lence in this region is determined mainly by a flux of energy from larger vortices to 
smaller ones and by the rate of turbulent dissipation. In this region the terms involving 
time derivatives in (i) through (6) will be small in comparison with the remaining terms 
[7]. Neglecting in (2), (3), (5), and (6) derivatives with respect to time and third-order 
correlations in comparisonwith pair correlations [8], we obtain expressions for the spec- 
tral functions describing the intensity of velocity and temperature fluctuations in the 
discrete and fluid phases: 

Eo(k, t ) = E u u ( k ,  t) = Eu(k,  t) (7 )  
1 + " ~ k  z ' 

Eo~ (k, t) = Eo~ (k, t) = Eo~ (k, t) 
1 -{-" TO~2 " ( 8 ) 

From (7) and (8) it is evident that the degree to which the particles are drawn into 
the fluctuating motion of the gas is determined by the dynamical ~u(k) = Tu~k 2 and thermal 
B0(k) = ~0X k2 inertias of the particles. For small-scale turbulence (~u(k) >> i, ~9(k) >> 
I) Ev(k, t) = Euv(k, t) ~ 0, Eo2(k, t) = Eo12(k, t) § 0, while for large-scale vortices 
(~u(k) << i, ~e(k) << i) Ev(k, t) = Euv(k , t) + Eu(k, t), E82(k, t) = E812(k, t) § Esz(k, t). 
Substituting (7) and (8) into (i) and (4), we obtain the following equations for the spectral 
functions of the velocity and temperature fluctuations of the gas in the presence of parti- 

OE~ol(k, t) F~,(k, t) = - -  f vk fEu  (k, t) 1 +  l + x ~ v k  2 ' ( 9 )  

OE~ t) Fol (k, t) - -  2zkfEo~ (k, t) 1 + ! c~ 1 --[-~oXk 2 " ( 1 0 )  

cles: 

The decrease of the fluctuation kinetic energy and the intensity of the temperature 
fluctuations of the gas with time is due to turbulent dissipation of velocity E u and tem- 
perature E 0 fluctuations in the fluid phase: 

x u (t)  = - -  - -  

xo (t) = 

c) E~(k,  t) dk=: 2v dkkfEu(k,  t) 1 +  l + ~ v k  2 ' 
Ot o o 

i t ] 0 Eol (k, t) dk 2% ,f dkkfE~ (k, t) r co r = 1 + " . ( 1 2 )  
Ot o o cl l + ~ o Z k  2 
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It follows from (ii) and (12) that the participation of the particles in the fluctua- 
ating motion increases the turbulent dissipation of the velocity and temperature fluctua- 
tions of the gas component of the suspension in comparison with a single-phase fluid because 
of an increase in the flux of energy from the larger vortices to the smaller ones. The con- 
tribution of the discrete phase to the rate of momentum and heat transport over the spectrum 
is determined by the dynamical and thermal inertiasof the particles. We consider (ii) and 
(12) in more detail. The integrands on the far right hand sides of these expressions reach 
a maximum near k ~ kq and k ~ knO, respectively, and vkn 2 = x -z and xkno 2 ~ ~nO -x [7] (~n, 
kn-I are the Kolmogorov characteristic time and length of the velocity fluctuations; xD0, 
kno -I are the analogs of these quantities for temperature fluctuations). The first terms 
in the far right hand sides of (ii) and (12) represent, respectively, turbulent dissipation 
of velocity and temperature in the gas due to small-scale turbulent shear stresses and tem- 
perature gradients in the gas: 

X,1 (t) : 2v Sdkk2Eu (k, t), (13) 
0 

XOl (t) :2 x S dkkBF~ (k, t). (14) 
0 

With the help of (13) and (14) one can estimate the magnitudes of turbulent dissipation of 
of velocity and temperature fluctuations in the suspension: 

[ c~/cl~. ] (16) 
Xe (t) ~ Sol (t) 1 + I + ~o/~o " 

It is evident from (15) and (16) that the contribution of the discrete phase to the 
turbulent dissipation becomes significant when the dynamical and thermal relaxation times 
of the particles are smaller than the Kolmogorov time scales of the turbulence ~D and ~D0" 
We note that the turbulent dissipation of heat in a suspension depends on the ratio of the 
thermal parameters of the particles and the gas phase. 

We consider in more detail the inertial and convective regions of the spectrum, assum- 
ing statistically stationary, homogeneous, isotropic turbulence. In these regions energy 
and heat is transferred from large vortices to smaller ones by cascade transport over the 
spectrum. In analogy with models of cascade transport of energy and heat in single-phase 
turbulence [9-11], we obtain from (9) and (ii) an expression for the total energy flux Su(k ) 
into a vortex with wave number k from larger vortices with wave numbers ranging from zero 
to k: 

k kE~(k) 1 +  l + % v k  2 (17) 
. s .  (k) = - -  SF~ (k) dk 

o T (k) 

where T(k) is the time of energy transport into a vortex with characteristic size k -I. Be- 
cause for a suspension with a small volume concentration of particles, the time of energy, 
transport over the spectrum depends on the turbulent shear stresses in the fluid phase only, 
we assume that the characteristic time T(k) in a dusty medium is the same as that for a 
single-phase fluid and has the form [9, i0]. 

T(k) = = u [ x ~ l / S k  - 2 / 8  ~ : Q a ~ ] .  

In the same way we find the following expression for the cascade transport of heat in 
the wave number region from zero to k in a gas with particles: 

k 
Sol (k) -= - -  .[ Fo, (k) dle = - -  

0 

kEol(k) [1 + c, a) 1 
cl I + %Xk z 

- - l l3  --218 
(Z 0 [Xul . .  Ie "4-Q0*~] 

(18) 
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(i0), (17), and (18) we obtain the following equations for the spectral func- From ( 9 ) ,  
tions for the velocity and temperature fluctuations in a dusty gas: 

d k E ~ ( k ) ( 1  '-4- (9 ) 

- -  c~-~ - 7  E -t/a,~l k -2/~ + O,~ (~"/E~I) 1 / 2 ,  = 2vk z 1 -}- -1 -}- %'~k ~ 

d kE~ 1+ c2 q3 )] [ ] 
c~ 1 +xoXk  z : 2 z k Z  1 + c2 r Eo~(k). (20)  

a~  --dk- Zu-ll/3 k -2/3 + Qo ('V/Eul) l/2 " CI l+x0 zkz 

It is evident from (15), (16), (19), (20) that particles with small dynamical and 
thermal inertias (~u << ~q and ~% << xqe), and also particles whose dynamical and thermal 
relaxation times are much larger than the Ko!mogorov characteristic times, do not distort 
the spectrum of velocity and temperature fluctuations of the gas from the case of single- 
phase turbulence. The intensity of the velocity and temperature fluctuations of a single- 

phase fluid in the inertial and convective regions of the spectrum is determined by turbu- 
lent dissipation of kinetic energy and heat (lul and Eg~). Choosing the same parameters 
Eul and 2ei as the determining parameters for the intensity of velocity and temperature 
fluctuations in a suspension, we obtain, after integrating (19) and (20), expressions for 
the three-dimensional normalized spectra of the velocity and temperature fluctuations in a 
gas with particles: 

e~ (y) = cz,,y -s /3  (1 + Quy 2/3) exp [--  ~ (Quy z + 1,5y4/~)] 

- -  e x p | - -  ( [  (1 - ~ )  ~ /  / 1  - ~ ---- - -  

�9 Ta \ Td -~d I + Tay z (21)  

eol (y) == aoy -5/3 (1 J- Qoy 2/3) exp [--  o~ o (Qoy ~ -}- 1,5y4/3)/pr] 
c./c~CD • 

1 +  
1 + (3c=)f(2c~) Tdy 2 (22)  

3 Pr T----~ , 3 Pr c jc ,Te  / E1 3 Pr c~/clT~ 

The normalized three-dimensional spectra (21) and (22) obey the following relations, analo- 
gous to the case of a single-phase fluid: 

i fi~ol (Y) dy = 1. 
2 

2 yZe~,(y) dy--- Pr 
0 

The t h r e e - d i m e n s i o n a l  s p e c t r a  ( 2 1 ) a n d  (22)  can be t r a n s f o r m e d  t o  o n e - d i m e n s i o n a l  n o r m a l i z e d  
spectra using the equations of [I0, ii]. 

Figure 1 shows the spectra of velocity fluctuations of the gas in the presence of parti- 
cles with different inertias. We see that the particles cause a decrease in the intensity 
of turbulent fluctuations in the inertial region of the spectrum and an expansion of the 
region of small-scale turbulence into the viscous dissipation region. Figure 1 also shows 
the one-dimensional spectrum ev(1)(y) of fluctuations in the discrete phase; an increase 
in the dynamical inertia of the particles leads to a sharp decrease in the intensity of 
turbulent fluctuations of the discrete phase in the region of small-scale turbulence. Fig- 
ure 2 illustrates the behavior of the dissipation functions describing the total turbulent 
dissipation in the suspension and the part of the turbulent dissipation due to turbulent 
stresses in the gas: 

[ (D ], a ,n(y)=yZe, , l (y) .  ~u (Y) = yZeul (y) l q- l + Taf t  " 

Particles with a large dynamical relaxation time shift the maximum of the dissipative func- 
tion Oul(y) toward larger wave numbers. The addition of the particles leads to an increase 
in the turbulent dissipation of the suspension over that occurring in a pure gas. The easier 
the particles are drawn into the fluctuating motion, the larger the turbulent dissipation in 
the suspension. 
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One-dimensional spectra of velocity fluctuations 
of the gas (solid curves) and the discrete phase (dashed 
curves) in a suspension: i) @ = 0; 2-4) @ = 8; 2) T d = 25; 
3) 50; 4) 100. 

Fig. 2. Spectral dissipation functions (solid curves - 
total dissipation; dashed curves - the part of the dissipa- 
tion due to shear stresses in the gas): I) @ = 0; 2, 3) 
r = 8; 2) T d = 25; 3) 50. 

Figure 3 shows the effect of the discrete phase on the one-dimensional spectrum of 
temperature fluctuations of the gas for different thermal and physical properties of the 
particles and the gas. For a pure fluid the results obtained from (18)-(21) reduce to 
the results of [12, 13]: A small Prandtl number of the gas phase shifts the diffusion re- 
gion of the spectrum toward smaller wave numbers and a large Prandtl number expands the 
convective region of the spectrum in comparison with the one-dimensional spectrum of veloc- 
ity fluctuations of the gas. It is clear from this figure that in the presence of the par- 
ticles the intensity of the temperature fluctuations of the gas decreases in the convective 
region and the diffusion region of the spectrum expands. With increasing ratio of the heat 
capacities of the particles and gas there is a strong suppression of turbulent temperature 
fluctuations of the gas in the convective region and a sharp reduction of the level of tur- 
bulent temperature fluctuations in the discrete phase; the latter occurs because an increase 
in the ratio of the heat capacities of the particles and gas leads to an increase in the 
thermal inertia of the impurity particles. 

The three-dimensional spectrum of velocity fluctuations in a single-phase fluid can 
often be approximated by the Carman formula [7, i0] over the entire range of wave number. 
For a suspension the Carman dependence modified to take into account the distortion of 
the spectrum in the presence of the impurity particles can be written in the form 

e~(k) _ ~ x~( l+x~) - '7 /6  (22)  
u z k~ 1 --{- ((1)/(1 --]- T j 2 ) )  

The constant A is found from the normalization condition ~-Z-u2= [ E=(k)dk: 
2 

2 1 + (4>/(1 + T~2)) 

We assume that the wave number region corresponding to power-consuming vortices is suf- 
ficiently distant from the wave number region corresponding to inertial transport; in other 
words, there exists a region of wave numbers such that k e << k << k d. Then, comparing (22) 
in the limit x >> 1 and (18) in the limit y << i, we obtain an expression for the wave num- 
ber of power-consuming vortices 

c~"312Eul (23) 
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Fig. 3. Effect of the thermal and physical properties of 
the particles and the gas on the one-dimensional spectra of 
temperature fluctuations in the gas (solid curves) and in 
the discrete phase (dashed curves): i, 2) ~ = 0; 3-6) ~ = 
4; T d = 50; i, 2) Pr = 0.04; c2/c I = i; 3) 0.04 and i0; 4) 
0.7 and i; 5) i0 and i; 6) i0 and i0. 

Fig. 4. Comparison of the experimental (points) [6] and 
calculated (curves) spectra of velocity fluctuations in a 
gas with particles: i) ~ = 0; 2) 1.3; 3) 2; R e = 2.3"I04; 
R/a = 200. 

The three-dimensional spectrum (22) can be transformed to a one-dimensional spectrum 
using the formula of [i0]. In Fig. 4 the one-dimensional spectrum of a suspension calcula- 
ted according to the modified Carman formula (22) is compared with the experimental data 
of [6]. The experimental spectra were measured at the center of a pipe, where, with known 
exceptions, the turbulence can be considered as homogeneous and locally isotropic. The 
turbulent dissipation in the gas is calculated according to the formula [6] 

X~ = bu$/R. 

The Taylor hypothesis was used in calculating the frequency of turbulent fluctuations. 
It is evident from Fig. 4 that the modified Carman spectrum (22) reproduces the basic fea- 
tures of the effect of impurity particles on the fluctuation spectrum of the gas phase. 

NOTATION 

Eu(k, t), Ev(k, t), Euv(k, t), spectral functions describing the second one-point cor- 
relations of velocity fluctuations in the fluid, discrete phase, and fluid plus discrete 
phase, respectively; Fu(k , t), Fv(k, t), Fuv(k, t), spectral functions describing the third 
two-point correlations of the velocity fluctuations in the fluid, discrete phase, and fluid 
plus discrete phase, respectively and representing inertial transport of energy of turbulent 
fluctuations over the spectrum; ~u = (2P2a2)/(gPl ~), dynamical relaxation time of the par- 
ticles; P2, Pl, densities of the particles and the gas; a, particle radius; v, molecular vis- 
cosity of the gas; ~, mass concentration of particles; E01(k, t), E82(k, t), E812(k, t), 
spectral functions describing the second one-point moments of the temperature fluctuations 
in the fluid, discrete phase, and fluid plus discrete phase, respectively; F~1(k , t), F82(k, 
t), F812(k, t), spectral functions representing convective transport of temperature fluctua- 
tions in the fluid, discrete phase, and fluid plus discrete phase, respectively; T 8 = (3p=c 2. 
a2)/(2plcix), thermal relaxation time of the particles; c2, cl, heat capacities of the par- 
ticles and the gas; X, molecular thermal diffusivity of the gas; ~u, Qu, ~8, QS, universal 
constants whose values are determined for single-phase flow; Pr = ~/X; ~q = (V/Zul) I/2, 
Kolmogorov characteristic time; y = k/kq; k n = (Eul/V3) 1/4, Kolmogorov characteristic wave 
number; T d = (2p2a2k~2)/(90~),dimensionlessdynamical relaxation time of the particles; 

- ~ / .  ~ / ~  ~ ~ / ~  
eu(Y) - Eu(k)l(EulV ) ; eel(Y) = E8z(k)l(EulV) IZSI; x = klke; kq8 =(Eul/X ) , Kol- 
mogorov characteristic wave number for temperature fluctuations; Tn8 = (X/Zul)I/2, Kolmogo- 

rove characteristic time for temperature fluctuations; T e = (2p2a2ke2)/(9pl); u 2, mean- 

square velocity of the fluctuations; F~(y) = Sexp(--y0dt/t, exponentialintegral; ev(Y) = Ev(k)/ 
1 
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(7ui vs)I/~; e02(Y) = E%2(k)/(ZulVl/4)Z01; b = 2.2, constant used in the calculation of turbu- 
lent dissipation for the flow of a gas in a pipe; u+, dynamical velocity; R, radius of the 

pipe; eu(1)(y), ev (1)(y), eei(1)(y), e~2 (1)(y), one_dimensiona I normailZed spectra of veloc- 
ity and temperature fluctuatiOns of the particles; Re, Reynolds number of the flow. 
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GASDYNAMICS AND HEAT TRANSFER DURING AXISYMMETRIC TURBULENT 

JET INTERACTION WITH A NORMALLY DISPOSED AREA 

A. D. Aralov,* A. I. Mel'nikov, V. A. Nemykin, 
and S. I. Stepanov 

UDC 532.525.6 

The influence of selecting the kind of turbulence model on the results of a 
numerical computation of turbulent jet interaction with an obstacle is ana- 
lyzed. 

At this time the investigation of turbulent jet interaction with different obstacles 
is of considerable practical interest. This paper is devoted to an analysis of certain re- 
suits of numerical and experimental investigations of the flow and heat transfer during im- 
pingement of a submerged isothermal axisymmetric turbulent jet on a normally disposed heat- 
ed area. 

The method elucidated in [I] was used for the numerical solution of the time-averaged 
Navier-Stokes turbulent viscous fluid flow equations with constant thermophysical properties. 

Closure of the system of differential equations in the vortex intensity ~, stream func- 
tion ~, and temperature T variables was realized by using the followingtwo turbulencemodeis: 
K(Lv) and K - e. 

The one-parameter turbulence model K(L v) proposed in [2, 3] assumes dependence of the 
turbulent viscosity VT on energy of the turbulent fluctuations K and the turbulence scale 
Lg: 

~=C~V~L~. 

The energy of turbulent fluctuations K is determined by solving the differential equa- 
tion of the fluctuation energy balance. Far from a solid surface the turbulence scales are 

*Deceased. 
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